Two Catalan-type Riordan Arrays and their Connections to the Chebyshev Polynomials of the First Kind
نویسنده
چکیده
Riordan matrix methods and properties of generating functions are used to prove that the entries of two Catalan-type Riordan arrays are linked to the Chebyshev polynomials of the first kind. The connections are that the rows of the arrays are used to expand the monomials (1/2) (2x) and (1/2) (4x) in terms of certain Chebyshev polynomials of degree n. In addition, we find new integral representations of the central binomial coefficients and Catalan numbers.
منابع مشابه
A Study of Integer Sequences, Riordan Arrays, Pascal-like Arrays and Hankel Transforms
We study integer sequences and transforms that operate on them. Many of these transforms are defined by triangular arrays of integers, with a particular focus on Riordan arrays and Pascal-like arrays. In order to explore the structure of these transforms, use is made of methods coming from the theory of continued fractions, hypergeometric functions, orthogonal polynomials and most importantly f...
متن کاملMeixner-Type Results for Riordan Arrays and Associated Integer Sequences
We determine which (ordinary) Riordan arrays are the coefficient arrays of a family of orthogonal polynomials. In so doing, we are led to introduce a family of polynomials, which includes the Boubaker polynomials, and a scaled version of the Chebyshev polynomials, using the techniques of Riordan arrays. We classify these polynomials in terms of the Chebyshev polynomials of the first and second ...
متن کاملOn the Connection Coefficients of the Chebyshev-Boubaker Polynomials
The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection...
متن کاملSome Identities and a Matrix Inverse Related to the Chebyshev Polynomials of the Second Kind and the Catalan Numbers
In the paper, the authors establish two identities to express higher order derivatives and integer powers of the generating function of the Chebyshev polynomials of the second kind in terms of integer powers and higher order derivatives of the generating function of the Chebyshev polynomials of the second kind respectively, find an explicit formula and an identity for the Chebyshev polynomials ...
متن کاملApplication of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کامل